Estimating gene and
transcript abundance
using RNA-seq
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Why not simply “count” reads

The RNA-seq reads are drawn from transcripts, and
our spliced-aligners let us map them back to the
transcripts on the genome from which they originate.

Problem: How do you handle reads that align equally-
well to multiple isoforms / or multiple genes?

e Discarding multi-mapping reads leads to incorrect
and biased quantification

e Even at the gene-level, the transcriptional output of a
gene should depend on what isoforms it is
expressing.



First, consider this non-Biological example

Imagine | have two colors of circle, and

. | want to estimate the fraction of circles
that are and . 'l sample tfrom them by
tossing down darts.

Here, a dot of a color means | hit a circle of that color.
What type of circle is more prevalent?
What is the fraction of red / blue circles?




First, consider this non-Biological example
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. | want to estimate the fraction of circles
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You're missing a crucial piece of information!
The areas!



First, consider this non-Biological example

Imagine | have two colors of circle, and

. | want to estimate the fraction of circles
that are and . 'l sample tfrom them by
tossing down darts.

You're missing a crucial piece of information!
The areas!

There i1s an analog in RNA-seq, one needs to know the
length of the target from which one is drawing to
meaningfully assess abundance!




Resolving multi-mapping is fundamental to quantification

These errors can affect DGE calls
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From: Soneson C, Love M| and Robinson MD 2016 [version 2; referees: 2 approved] F1000Research 2016, 4:1521 (doi: 10.12688/f1000research.7563.2)



Resolving multi-mapping is fundamental to quantification

Can even affect abundance estimation in absence of alternative-splicing
(e.g. paralogous genes)

Paralogs of ENSG00000090612

salmon_gene featureCounts FPKM_gene

-
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Estimated TPM

spearman = 0.975
pearson = 0.975

spearman = 0.643
pearson = 0.78

] r 1 ]
1 10 1 10
True TPM

From: Soneson C, Love M| and Robinson MD 2016 [version 2; referees: 2 approved] F1000Research 2016, 4:1521 (doi: 10.12688/f1000research.7563.2)



Main challenges of fast & accurate quantification

* finding locations of reads (alignment)

- simply aligning reads in a
is slower than necessary - ply aligning

sample can take hours

» alternative splicing and related
seguences creates ambiguity about
where reads came from

multi-mapping reads
_, cannot be ignored /
discarded or assigned

naively
» sampling of reads is not uniform or RNA-seq can exhibit
idealized, exhibits multiple types of ™ axtensive and sample-
bias specific bias

There Is both technical
(shot noise) and inherent
inferential uncertainty in
abundance estimates

 uncertainty in ML estimate of —>
abundances


https://en.wiktionary.org/wiki/na%C3%AFvely

How can we perform inference from sequenced fragments?
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How can we perform inference from sequenced fragments?

Experimental Mixture
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length (=) = 100 x 6 cOpies =600nt ~ 30% blue
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length( e )=33 x6copies =198nt ~10% red
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We call these values n =[0.3, 0.6, 0.1] the nucleotide fractions,
they become the primary quantity of interest

length(



How can we perform inference from sequenced fragments?

Think about the “ideal” RNA-seq experiment . . .

Experimental Mixture Read set
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Resolving a single multi-mapping read

~ P ~ L 4
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Say we knew the n, and observed a single read that mapped
ambiguously, as shown above.

What is the probability that it truly originated from G or R?

e 08
Pr{r from G} = — e ength(G )77R ____________ = 55 6|6 -7 = 0.75
length(G) T Tength(R) © 66 1 3 L
length(G) ~ length(ft) - 66 33 normalization
i 0.1 factor
Pr{r from R} = ——= ___?Rg...l """ LT = st = 0.25

lengtht=———-—— =100 x6 copies =600nt ~ 30% blue
length( === )=066 Xx 19 copies =1254nt ~60% green
length( e )=33 x6copies =198nt ~10% red



Units for Relative Abundance
TPM (Transcripts Per Million)

TPM,; = p; X 10° where 0 < p; <1 and Zpizl
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7. ) transcript |
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Alignment of RNA-seq data (the input to inference)

ad Spliced alignment against genome , ,
Alignment spanning

) splice junction
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Van den Berge, Koen, et al. "RNA sequencing data: hitchhiker's guide to expression analysis." Annual Review of Biomedical Data Science 2 (2019): 139-173.



Probabilistic assignment (EM algorithm)

Ambiguously aligned fragments
soft-assigned with probabilities

Ps Pc Pr

Abundance at step i

Annotated
. . . isoforms

|
Updated abundance I I I :I I II IIIIIIII
LI

Soft assignments Relative probability
summed to estimate @ @ === . Fragment spanning
relative abundances splice junction

Van den Berge, Koen, et al. "RNA sequencing data: hitchhiker's guide to expression analysis." Annual Review of Biomedical Data Science 2 (2019): 139-173.



A probabilistic view of RNA-Seq quantification

. assumes
nucleotide Known .
. . Independence
fractions transcriptome
of fragments

Pr{F |n,T}=]]Pr{f; |n T}

7=1
observed
fragments N
(reads) = 11> Pr{ti|n} -Pr{fi|tizj=1}
j=1 i=1
Prob. of selecting Prob. of generating
ti given n fragment fj given that it originates from {
Depends on Independent of
abundance abundance
estimate estimate

We want to find the values of n that maximize this probabillity.
We can do this (at least locally) using the EM algorithm.

*Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." BMC bioinformatics 12.1
(2011): 1.
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A probabilistic view of RNA-Seq quantification

. assumes
nucleotide Known .
. . iIndependence
fractions transcriptome
of fragments

N
Pr{F|n,T}= H Pr{f; |, T}  We can safely truncate Priti | n)
to O for transcripts where a

7=1 , .
observed fragment doesn’t map/align.
fragments N (M o

(reads) = 11D Pr{ti | n}-[Pr{fi| i,z =1}
j=1{i=1 )
Prob. of selecting Prob. of generating
ti given n fragment fj given that it originates from {
Depends on Independent of
abundance abundance
estimate estimate

We want to find the values of n that maximize this probability.
We can do this (at least locally) using the EM algorithm.

*Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." BMC bioinformatics 12.1
(2011): 1.



A probabilistic view of RNA-Seq quantification

E-step: (what is the “soft assignment” of each read to the
transcripts where it aligns)

1EYP(fo Z,5i = 1)
Zi’,]( (t)/f )P(fnl ni'’j’ )

Lo = P(Z nij = =11fn") =

M-step: Given these soft assignments, how abundant is each
transcript?

(t+1) _ Ezipno [Ci]
77i - N ’

where C; = ZP( nii = 11, n®)

n,i,J

This approach is quite effective. Unfortunately, it's also quite
slow.

Equations adapted from: Bo Li, Victor Ruotti, Ron M. Stewart, James A. Thomson, Colin N. Dewey; RNA-Seq gene expression estimation with read mapping uncertainty, Bioinformatics, Volume 26, Issue 4, 15 February 2010, Pages 493500, https://doi.org/1(



https://doi.org/10.1093/bioinformatics/btp692

An Interactive example

PROB = 1
TXPID = 0

def do_em_algo(read_compat, txp_lengths, numIt=10000):
uni = 1.0 / len(txp_lengths)
txp_abund = [uni for i in range(len(txp_lengths))]
txp_abund_new = [0.0 for i in range(len(txp_lengths))]
for i in range(numIt):
for r, compat_txps in read_compat.items():
denom = 0.0
for (t, p) in compat_txps:
denom += txp_abund[t] * (1.0 / txp_lengths[t])
for i, (t, p) in enumerate(compat_txps):
read_compat([r] [i] [PROB] = (txp_abund[t] * (1.0 / txp_lengths[t])) / denom
for r, compat_txps in read_compat.items():
for (t, p) in compat_txps:
txp_abund_new([t] += p
txp_abund = txp_abund_new
txp_abund_new = [0 for i in range(len(txp_lengths))]
return txp_abund

txp_lengths = [150.0, 220.0]
read_compat = {}
for i in range(100):
read_compat[i] = [[0, ©.0], [1, 0.0]]
for i in range(100, 125):
read_compat[i] = [[1, 0.0]]
for i in range(125, 175):
read_compat([i] = [[0, ©.0], [1, 0.0]]
for i in range(175, 185):
read_compat[i] = [[0, 0.0]]

alphas = do_em_algo(read_compat, txp_lengths, 5000)
print(alphas)

https://colab.research.google.com/drive/1JS0Dsu2lYGjsTqjdWYJaRiIA7TmXRBhSaU?usp=sharing



https://colab.research.google.com/drive/1JS0Dsu2lYGjsTqjdWYJaRiA7mXRBhSaU?usp=sharing

Gene expression estimation accuracy in simulated data

Mouse liver
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From supplementary material of : Bo Li, Victor Ruotti, Ron M. Stewart, James A. Thomson, Colin N. Dewey; RNA-Seq gene expression estimation with read mapping uncertainty, Bioinformatics, Volume 26, Issue 4, 15 February 2010, Pages 493-500, https://
btp692


https://doi.org/10.1093/bioinformatics/btp692
https://doi.org/10.1093/bioinformatics/btp692

What if we model fragment counts instead of
individual fragments themselves?
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Figure 2 from Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.



Fragment Equivalence Classes

Fragments Transcripts

v
M m O QO ™ >

Reads 1 & 3 both map to transcripts B & E
Reads 2 & 4 both map to transcript C

We have 4 reads, but only 2 eq. classes of reads

eqg. Label Aux weights
{B,E} wiB.Elg wiB.Eig
{C} 2 wiClc

This idea goes quite far back in the RNA-seq literature; at least to
MMSeq (Turro et al. 2011)

Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.



Fragment Equivalence Classes

Fragments Transcripts

v
M m O QO ™ >

_ wii encodes the “affinity” of class j
Reads 1 & 3 bOth map tO tranSCI‘IptS B & E to transcript i aCCQrding to the

Reads 2 & 4 both map to transcript C model. This is P{f;| t}, aggregated
for all fragments in a class.

We have 4 reads, but only 2 eq. classes of reads

eg. Label

{B,E}
{C}

This idea goes quite far back in the RNA-seq literature; at least to
MMSeq (Turro et al. 2011)

Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.



The number of equivalence classes is small

Yeast Human Chicken
# contigs 7353 107,389 335,377
# samples 6 6 8
Total (paired-end) reads ~36,000,000 ~116,000,000 ~181,402,780
Avg # eq. classes (across samples) 5197 100,535 222,216

The # of equivalence classes grows with the complexity of the
transcriptome — independent of the # of sequence fragments.

Typically, two or more orders of magnitude fewer equivalence
classes than sequenced fragments.

The offline inference algorithm scales in # of fragment
equivalence classes.



This lets us approximate the likelihood efficiently

Approximate this: /\/ sum over all alignments of fragment

cmF)=|] ZPI (ti | m)Pr(f|t;)

[ €F 1=1

- oroduct over all fragments
with this: AT

c(mF)~ || > Pr(ti|m)-Pr(f|F%t)

FaeC \ (i1,t;)eQ(F9I)

K V sum over all transcripts labeling this eq. class
product over all equivalence classes




Why might Pr(f; | t) matter?

Consider the following scenario:

isoform A o o _

o Conditional probabilities can provide
valuable information about origin of a

200bp fragment! Potentially different for

isoform B e, each transcript/fragment pair.
........

450 bp
fragment
length dist. iR Prob of observing a fragment of size ~200 is large

Prob of observing a fragment of size ~450 is small

0 200 800

Many terms can be considered in a general “fragment-transcript agreement” model1.
e.g. position, orientation, alignment path etc.

1 “Salmon provides fast and bias-aware quantification of transcript expression”, Nature Methods 2017



Actual RNA-seq protocols are a bit more “involved”

RNA
selection

Extraction

Single-end Paired-end

e — << 70 R A
h\\ | IE== =

There is substantial potential for biases and deviations from the basic
model — indeed, we see quite a few.

Prakash, Celine, and Arndt Von Haeseler. "An Enumerative Combinatorics Model for Fragmentation Patterns in RNA Sequencing Provides Insights into Nonuniformity of the Expected Fragment Starting-Point and Coverage Profile." Journal
of Computational Biology 24.3 (2017): 200-212.



Biases abound in RNA-seq data

Blases In prep & sequencing

can have a significant effect on the .~
fragments we see: \/

25 50 75 100
GC fraction

ragment gc-b'as1— fctor(ebin) — (1,34 — (54,68 — (68, 101)
The GC-content of the fragment ’
affects the likelihood of sequencing

Sequence-specific bias?—
seguences surrounding fragment
affect the likelihood of sequencing .

Positional bias2—
fragments sequenced non-uniformly
across the body of a transcript S 4

1:Love, Michael |., John B. Hogenesch, and Rafael A. Irizarry. "Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation." bioRxiv (2015): 025767 .

2:Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): 1.



Basic idea (1): Modify the “effective length” of a
transcript to account for changes in the sampling
orobability. This leads to changes in soft-assignment in
EM -> changes in TPM.

Basic idea (2): The effective length of a transcript is the sum
of the bias terms at each position across a transcript. The
bias term at a given position is simply the

(observed / expected) sampling probabillity.

The trick Is how to define “"expected” given only
blased data.

1:Love, Michael |., J 3xiv (2015): 025767 .



Salmon provides fast and bias-aware
quantification of transcript expression

Patro, R., Duggal, G., Love, M. 1., Irizarry, R. A., & Kingsford, C. (2017).
Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods.



Salmon’s “pipeline”

raw reads input transcripts

(e.g. fastq files) S——

, \
: Salmon index :
T (B E—— ) : :
lightweight
replacement
- N / for traditional alighment
Salmon execution timeline quasi-mapping
& )
aligned reads (e.g. bam file) &
reference transcripts
Online inference of abundance ¢ : A | —
online inference
Estimation of "foreground” bias models l[SC|3VBO] <4 —
Computation of equivalence class weights | \_ Y

initial abundances &
fragment eijiv. classes

Estimation of background bias models £ R
offline inference

. . . Ehferi =l Note: Salmon can work
Offline algorithm runs until convergence | \_ e

converged abundances & V\{'th either raw reads or
fragment equiv. classes with reads aligned to the
% transcriptome.

Recomputation of effective lengths

UG, -
Draw and save estimates from the | Optional \|
posterior distribution of read counts Posterior sampling |

(if requested) | (Gibbs or bootstrap) |



Phase 1: Online Inference (asynchronous!)

e ("
Online inference of abundance

ey ' online inference
Estimation of "foreground"” bias models

[SCVBO0] *
P Frocess frag ments | N batCh es: Computation of equivalence class weights
0 rl 1 n 2 n 3 n 4

Compute local n’ using nt1 & current “bias” model to allocate fragments

Update global nucleotide fractions: nt=nt!'+ atn’

T Weighting factor that

Update “biaS” mOdel decays over time

Place mappings in equivalence classes

* Have access to all fragment-level information when making these updates
» Often converges very quickly.

« Compare-And-Swap (CAS) for synchronizing updates of different batches

*Based on: Foulds et al. Stochastic collapsed variational Bayesian inference for latent Dirichlet allocation. ACM SIGKDD, 2013.
Broderick, Tamara, et al. "Streaming variational bayes." Advances in Neural Information Processing Systems. 2013.
Hsieh, Cho-Jui, Hsiang-Fu Yu, and Inderjit S. Dhillon. "PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent." ICML. Vol. 15. 2015.

Raman, Parameswaran, et al. "Extreme Stochastic Variational Inference: Distributed and Asynchronous." arXiv preprint arXiv:1605.09499 (2016). (@/CML 2017)



Give each transcript appropriate prior mass n (init.)

For each mini-batch Bt of reads {

For each read r in Bt {

For each alignment a of r {
compute (un-normalized) prob of a using nt-1, and aux params

}

normalize alignment probs & update local transcript weights n’
add / update the equivalence class for read r
sample a € r to update auxiliary models

}

update global transcript weights given local transcript
weights according to “update rule” = nt=nt!+win’

}

\ mini-batches processed in parallel by different threads

additive nature of updates mitigates effects of
no synchronization between mini-batches

Broderick, Tamara, et al. "Streaming variational bayes." Advances in Neural Information Processing Systems. 2013.
Hsieh, Cho-Jui, Hsiang-Fu Yu, and Inderjit S. Dhillon. "PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent." ICML. Vol. 15. 2015.

Raman, Parameswaran, et al. "Extreme Stochastic Variational Inference: Distributed and Asynchronous." arXiv preprint arXiv:1605.09499 (2016). (@/CML 2017)



In this phase, we maintain current estimates of abundance.

Each group of fragments arrive (streaming), and we use their
mapping locations & current estimates to: online inference
1. Allocate them to transcripts
2. Update auxiliary models [SCVBO]
3. Place them in equivalence classes

We use a streaming, parallel, stochastic inference algorithm for Phase 1; a variant
of Stochastic Collapsed Variational Bayesian Inference [SCVBO]*

* Foulds, James, et al. "Stochastic collapsed variational Bayesian inference for latent Dirichlet allocation." Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2013.



Optimizing the objective

Estimation of background bias models f B
. : offline inference
Recomputation of effective lengths [EM or VBEM]
Offline algorithm runs until convergence | 5

our ML objective has a simple, closed-form update rule in terms of our eq. classes

T count of eq.
class |
W,

E N1 q weight of ti in eq.
vqec 2k tryenFa) Y Wy class ¢

™ estimated read count from transcript |
7771 — at iteration u+1

Zjaj

we also provide the option to use a variational Bayesian objective instead



Accuracy difference can be larger with biased data

Simulated data: Lower is better
2 conditions; 8 samples each

1

|

|

|
I
[
[ ]

!

« Simulated transcripts across entire y
genome with known abundance “op
using Polyester (modified to
account for GC bias)

 How well do we recover the
underlying relative abundances?

 How does accuracy vary with level
of bias?

Median (|log, (estimate/truth)|)

N © 2 S AN O o
< \(bo\‘\ée’% "
@’b@ \ +0_,’b@ & o
P P

Sequence-bias models don’t account for fragment-level GC bias



Mis-estimates confound downstream analysis

Recovery of DE transcripts

Simulated data: =
2 conditions; 8 replicates each
Q|
» set 10% of txps to have fold °
change of 1/2 or 2 — rest
unchanged. > €
* How well do we recover true h <
DE? °
o —— Salmon t-test TPM
» Since bias is systematic, effect o L Samon DENeR oo
may be even worse than % " Kalisto DESeqp
accuracy difference suggests. o/t = relleto ST me voom

| |

| |
0.0 0.2 04 0.6 0.8 1.0
False Discovery Rate



Importance with experimental data

30 samples from the GEUVADIS study:
15 samples from UNIGE sequencing center
15 samples from CNAG_CRG sequencing center

Same human population, expect few-to-no real DE
Randomized condition assignments result it << 1 DE txp

DE of data between centers (FDR < 1%) (TPM > 0.1)

Salmon Kallisto eXpress

All transcripts

Transcripts of 2
isoform genes

Bias and batch effects are substantial, and must be accounted for.



Importance with experimental data

30 samples from the GEUVADIS study:
15 samples from UNIGE sequencing center
15 samples from CNAG_CRG sequencing center

Effects seem at least as extreme at the gene level

DE of data between centers (FDR <1%) (TPM > 0.1)

Kallisto eXpress

All genes

Transcripts of 2
isoform genes

Bias and batch effects are substantial, and must be accounted for.



Further improving the tactorization
(at low computational cost)

Bioinformatics, 33, 2017, i1142-i151
doi: 10.1093/bioinformatics/btx262
ISMB/ECCB 2017

Improved data-driven likelihood factorizations
. for transcript abundance estimation

. Mohsen Zakeri, Avi Srivastava, Fatemeh Almodaresi and Rob Patro*

Department of Computer Science, Stony Brook University, Stony Brook, NY 11790, USA



A probabilistic view of RNA-Seq quantification

We want to find the values of n that maximize this probability.

We can do this (at least locally) using the EM algorithm.

but

This leads to an iterative EM algorithm where each iteration scales
in the total number of alignments in the sample (typically on the
order of ), and typically iterations

L F,T)= H ZPrt|nPrf\t)

JeEF t,€Q(f)

Set of transcripts where f maps/aligns

*Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." BMC bioinformatics 12.1
(2011): 1.



Recall : Fragment Equivalence Classes

[ f = ) =f)
Q(f) = {t | f maps to t)

Fragments Transcript

v
MmO W >

Reads 1 & 3 both map to transcripts B & E
Reads ? & 4 both map to transcript C

We have 4 reads, but only 2 eqg. classes/types of reads

eqg. Label

{B.E}
C}




Equivalence classes in RNA-Seq quantification

Long history of this idea — collapsing “redundant” reads

This list is not-complete (just illustrative)

Statistical Science

, Vol. 26, No. 1,
OI: 10.1214/10-STS343
Ins f

D X
© Institute of Mathematic

Statistical Modeling of RNA-Seq Data

Julia Salzman’, Hui Jiang' and Wing Hung Wong

Sailfish enables alignment-free
iIsoform quantification from
RNA-seq reads using lightweight

algorithms RNA-Skim: a rapid method for RNA-Seq
Rob Patro!, Stephen M Mount?? & Carl Kingsford! quantifica’[ion at ’[ranscrip’[ leve]

Zhang & Wang

frequencies from RNA-Seq data

Marius Nicolae'", Serghei Mangul? lon | Mandoiu' and Alex Zelikovsky?

Estimation of alternative splicing isoform

Fleximer: Accurate Quantification of RNA-seq
via Variable-Length k-mers.
Chelsea J.T., et al

Near-optimal probabilistic
RNA-seq quantification

“Traditional”

Nicolas L Bray!, Harold Pimentel?, P4ll Melsted?
I & Lior Pachter24»>

©approaches | !
——2011 2014——2016——2017 —>
L — l
approaches
Salmon provides fast and

Haplotype and isoform specific expression
estimation using multi-mapping RNA-seq reads

1* .2 A 3 .1 Y 1 . 1
Ernest Turro', Shu-Yi Su®, Angela Gongalves®, Lachlan JM Coin’, Sylvia Richardson’, Alex Lewin Rafael A Irizarry3’4 & Carl Kingsford5

bias-aware quantification
of transcript expression

Rob Patro!, Geet Duggal?, Michael I Love®*4,




The number of equivalence classes is small

Yeast Human Chicken
# contigs 7353 107,389 335,377
# samples 6 6 8
Total (paired-end) reads ~36,000,000 ~116,000,000 ~181,402,780
Avg # eq. classes (across samples) 5,197 100,535 222,216

# of equivalence classes grows with the complexity of the
transcriptome — not (asymptotically) with the # of sequence fragments.

Typically, two or more orders of magnitude fewer equivalence classes
than sequenced fragments.

The inference algorithm scales in # of fragment equivalence classes.



This lets us approximate the likelihood efficiently

: : sum over all alignments of fragment
Approximate this: ;o ’ ’

Lo F,T)=|[ ) Pr(ti|n)Pr(f]|t:)

FEF t;€Q(f)

\—

poroduct over all fragments

with this:

CmF.T)~ || | ) Prtln) Pr(f|F.t)
FielC \t;eQ(F9)
_ _—— sumover all transcripts labeling this eq. class

product over all equivalence classes

The approximation applies because all f in Fa have the same

conditional probability given ti—- i.e. Pr(f | F%,t;)



Why might Pr(f; | t) matter?

Consider the following scenario:

isoform A o o _

o Conditional probabilities can provide
valuable information about origin of a

200bp fragment! Potentially different for

isoform B e, each transcript/fragment pair.
........

450 bp
fragment
length dist. iR Prob of observing a fragment of size ~200 is large

Prob of observing a fragment of size ~450 is small

0 200 800

Many terms can be considered in a general “fragment-transcript agreement” model1.
e.g. position, orientation, alignment path etc.

1 “Salmon provides fast and bias-aware quantification of transcript expression”, Nature Methods 2017



Does this term matter?

|
1.4 — "Base"” coverage —Pr(f | 79, 1) = m(fq;\
\. MEtIh od | _L»"Uniform” affinity
Pr(f | F9 _ ijg]—“qpl’(mt,-) Saimon- ___>IIA I" _H: _t
1.2 | Pr(f 1 F ) = /\,/q\/- salmon —— verage" aminity
_— Sa'mO“'F'V'}/v No factorization
BB RSEM
1.0
0.8 0 if x; + Vi =
a i — |
z xi — yil otherwise
0.6 . R ( x,—I—y,)
i Lower is better
0.4
0.2 '
0.0 _ I éi i'I'E-_

to t1 to ts ty ts te t- tg to
transcripts

 Transcripts of RAD51 gene — txp coverage drawn randomly in [1,200]

* Distribution over 30 random replicates of this distribution



Does this term matter?

I
1.4 —10x “"Base” coverage —FPr(f[/7.t)= |Q(fq;\
\_Meth"d _|»"Uniform” affinity
ZfE}"qPr(E'“i) salmon-U 1 1" <
1.2 B Pr(f | JT"q, t,) — - Na salmon —1 Average aﬂ:lﬂlty
— Sa'mO”'F'V'}/v No factorization
BN RSEM
1.0
0.8 0 if x; + y; = 0
= ARD; = ¢ |x; — i herws .
> | otherwise
0.6 ) N ( x,—|—y,)
Lower is better
0.4
0.2
. ;ﬂ i — “
to £ t ty ty te t t to ty

transcripts

 Transcripts of RAD51 gene — txp coverage drawn randomly in [1,200]

* Distribution over 30 random replicates of this distribution



Range-factorized equivalence relation

Recall:

[ f = ) =(f)
Q(f) = {t | f maps to t)

Now:

Given a fragment and vector of transcripts, returns a

b (f <f' ‘- >) vector of bin indices — each in [0,k) — that encode the
AUERNGERARRR conditional bin into which f falls with respect to each

< transcript.

# of conditional bins. Default = 4 + [\/(\Q(./Tq))ﬂ
[ 1= QUf) =Q(f) Noe(f,Qf)) = b (f,Qf))

Maps to the same set of Has the same binned cond. prob

transcripts vector



Pr(f | t2)

Range-based factorization

60 fragments in equivalence class {t1,t2}

0.75

0.5

0.25

0.25 0.5 0.75

Pr(f | t1)



Range-based factorization improves approximation

60 fragments in equivalence class {t1,t2}

N

% “Global” error
0.75 ® o :
VR
T ®
““o 0
~ s .‘0 ' Call
N—" o
- o
alF %
“Local” error
....... e
0.25 ®
o
®
0 ~‘
0 0.25 0.5 0.75 1

Pr(f | 1)

* Provides a way to control the divergence between the full and factorized
conditional likelihood distributions ot an equivalence class



1.4

1.2

1.0

0.8

ARD

0.6

0.4

0.2

0.0

How well does this work?

— 10X “Base” coverage

Method
salmon-U
salmon
salmon-RF
salmon-FM
eXpress
eXpress (+50 batch EM)
RSEM

ICRRNN

___________________________________________

Lower is better

L

transcripts

te

L YA
to te tg

 Transcripts of RAD51 gene — txp coverage drawn randomly in [1,200]

* Distribution over 30 random replicates of this distribution



Transcriptime-wide assessment can mask important differences

* Over tens of thousands of transcripts — overall ditferences are small

» But, we know this; factorized approaches are known to work well generally.2.3.4

Method MARD Spearman

~ factorization

_—Salmon-U
~Salmon

~. factorization — Sa/mon-RF

no factorization

Salmon-FM
eXpress
eXpress (+50)
RSEM

0.24
0.22
0.21
0.21
0.29
0.23
0.21

» 30M paired-end reads, simulated with RSEM-Sim

0.80
0.81
0.83
0.83
0.78
0.83
0.82

1) Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.

3) Bray, N. L., et al. "Near-optimal probabilistic RNA-seq quantification." Nature biotechnology 34.5 (2016): 525.

)
2) Srivastava, Avi, et al. "RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes." Bioinformatics 32.12 (2016): i192-i200.
)
4) Patro, Rob, et al. "Salmon provides fast and bias-aware quantification of transcript expression." Nature Methods 14.4 (2017): 417-419.



Transcriptime-wide assessment can mask important differences

» Focus on a subset of “critical” transcripts (not too easy, not intractable)
 Transcripts where RSEM yields an ARD in [0.25,0.75]

Method MARD Spearman

~ factorization

_—Salmon-U
~Salmon

~. factorization — Sa/mon-RF

no factorization

Salmon-FM
eXpress
eXpress (+50)
RSEM

0.46
0.43
0.41
0.41
0.53
0.48
0.41

» 30M paired-end reads, simulated with RSEM-Sim

0.56
0.58
0.64
0.65
0.54
0.59
0.65

1) Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.

)
2) Srivastava, Avi, et al. "RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes." Bioinformatics 32.12 (2016): i192-i200.
)
)

3) Bray, N. L., et al. "Near-optimal probabilistic RNA-seq quantification." Nature biotechnology 34.5 (2016): 525.
4) Patro, Rob, et al. "Salmon provides fast and bias-aware quantification of transcript expression." Nature Methods 14.4 (2017): 417-419.



Range-factorization improves correlation with full-model
on experimental data

4.0
Salmon
Salmon-U
3.5 Salmon-RF
Salmon-FM
30 eXpress
exXpress (+50 batch EM)
2.5

Frequency
N
-

1.5

1.0

0.5

0.0 1L | I
0.84 0.86 0.88 0.90 0.92 0.94 0.96

Spearman Correlation

SEQC samples from UHRR (SRR1215996 - SRR1217002)

/ technical replicates to detfine distribution
Treat RSEM results as ground truth (though clearly, it's not perfect)



Range-factorization is still very (computationally)
efficient

Factorization “size” on simulated data

Salmon-U Salmon Salmon-RF Salmon-FM
# eq. classes 438,393 438,393 625638 29447710
# hits 5,986,371 5,986,371 8,212,669 103,663,423

# eq. classes : The number of different “"types” of read — i.e. Z 1

FaeC
# hits : The number of hits is the sum, over each equivalence class, of the
number of transcripts in this equivalence class — i.e. Z Q(FT)]

Fael

Ditterence is marginal with respect to # of reads / alignments



Range-factorization is still very (computationally)
efficient

12500
10000
5000
2500
0

» Number of Reads (in m|II|ons)

Wall Clock Time (in sec)
o1
8

: )

Zooming out ® 200000
\ f=

) ;; 150000
s £
\ =

: \ %‘J 100000
\ e,
\ @)

N T 50000

: \ ; limit of zommed plot
T LLrEriely
0 =
30 60
B saimon RF [ express Wisan Number of Reads (in millions)

viethod B RSEM [ eXpress (+50 batch EM) [ Salmon FM



Range-factorization controls memory requirements

121

Max Memory Usage (in GB)

30 60 90 120
Number of Reads (in millions)

Method B Salmon RF [ eXpress " Salmon
B RSEM B eXpress (+50 batch EM) [ Salmon FM



Estimating Posterior Uncertainty



One “issue” with maximum likelihood (ML)

The generative statistical model is a principled and elegant way to
represent the RNA-seq process.

't can be optimized ef

iciently using e.g. the

=M/ V

-M algorithm.

but, these efficient optimization algorithms return “point estimates”

of the abundances. That Is, there IS no notion of how certain we are
INn the computed abundance of transcript.



One “issue” with maximum likelihood (ML)

There are multiple sources of uncertainty e.g.

* Technical variance : If we sequenced the exact same sample
again, we'd get a different set of fragments, and, potentially a
different solution.

* Uncertainty in inference: We are almost never guaranteed to
find a unique, globally optimal result. It we started our

algorithm with different initialization parameters, we might get
a different result.

We're trying to find the best
parameters in a space with 10s to
100s of thousands of dimensions!




€Cq

One “issue” with maximum likelihood (ML)

It we started here

We'd end up here

We'd end up here

but, if we started here

® h

https://commons.wikimedia.org/wiki/File:l ocal_search_attraction_basins.png (CC BY-SA 3.0)



https://commons.wikimedia.org/wiki/File:Local_search_attraction_basins.png

Assessing Uncertainty
There are a tew ways to address this “issue”

Do a fully Bayesian inference?:

Infer the entire posterior distribution of parameters, not just a ML
estimate (e.g. using MCMC) — too slow!

Y, Posterior Giblbs Sampling?:3:
Starting from our ML estimate, do MCMC sampling to explore

how parameters vary — if our ML estimate is good, this can be made
quite fast.

Bootstrap Sampling4:

Resample (from range-factorized equivalence class counts) with

replacement, and re-run the ML estimate for each sample. This can be
made reasonably fast.

v

Happy to discuss details / implications of this further.
1: BitSeq (with MCMC) actually does this. It's very accurate, but very slow. [Glaus, Peter, Antti Honkela, and Magnus Rattray. "ldentifying differentially
expressed transcripts from RNA-seq data with biological variation." Bioinformatics 28.13 (2012): 1721-1728.]

2. RSEM has the ability to do this, and it seems to work well, but each sample scales in the # of reads. [Li, Bo, and Colin N. Dewey. "RSEM: accurate
transcript quantification from RNA-Seq data with or without a reference genome." BMC bioinformatics 12.1 (2011): 1.]

3: MMSEQ can perform Gibbs sampling over shared variables (i.e. equiv classes), producing estimates from the mean of the posterior dist.Turro, Ernest, et
al. "Haplotype and isoform specific expression estimation using multi-mapping BRNA-seq reads.” Genome biology 12.2 (2011): 1.

4: |soDE introduced the idea of bootstrapping counts to assess quantification uncertainty. [Al Seesi, Sahar, et al. "Bootstrap-based differential gene

expression analysis for RNA-Seq data with and without replicates." BMC genomics 15.8 (2014): 1.], but it was first made practical / fast in kallisto by doing
the bootstrapping over equivalence classes.



A few ways to implement Gibbs Sampling for this problem
The model of MMSeq

He ~ Gam(a) ﬂ) (13)

The full conditionals are:

{Xil,...,Xit}‘{ul,..., ‘ut}’ki ~ MUlt ki’

ut|{X1t,...th}~Gam a+ZXit,[3+blt : (15)
]

Again, the s; are not needed as they are absent from
the full conditionals.

Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): 1.



A few ways to implement Gibbs Sampling for this problem

The model of BitSeq

P(1,]0,60°, R) = Cat(I,|pn), (10)
Gno = P(r,|noise)(1 — 9“’5)/2#),
m # 0; dnm = P(rn|L,)0m0% / Z(),
P(8|I,6%" R) = Dir(0|(a™ + C1,...,a"" + Cu)), (11)
P(6** 1,0, R) = Beta(0*"|a®" + N — Cy, B*" 4 C), (12)
Crn =061, =m).

[|Glaus, Peter, Antti Honkela, and Magnus Rattray. "ldentifying differentially expressed transcripts from RNA-seq data with biological variation.”
Bioinformatics 28.13 (2012): 1721-1728.]



A few ways to implement Gibbs Sampling for this problem

The model of BitSeq (collapsed sampler)

P(I,|I""™, R) = Cat(I,|o*), (9)
bty = P(rn|noise) (89 + ™) /29,
Dk act (—n)y (@™ +CS™) ) (6¥)
m 7& 07 ¢nm — P(TTL In)(a + C—{— )(]\/[o:d'”’—kcg_n))/zn )
C(+_”) = zi;én O(L; > 0)

with Zq({b*) being a constant normalising ¢,,* to sum up to 1, and a®" = 1, %t = 2, 32t = 2.

[|Glaus, Peter, Antti Honkela, and Magnus Rattray. "ldentifying differentially expressed transcripts from RNA-seq data with biological variation.”
Bioinformatics 28.13 (2012): 1721-1728.]



This uncertainty matters
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Figure 2.10: Posterior distribution of expression levels of three tran-
scripts of gene Q6ZMZO0. The posterior distribution is represented in form of
a histogram of expression samples converted into Log RPKM expression measure.
The dashed lines mark the mean expression for each transcript.

*Glaus, Peter. Bayesian Methods for Gene Expression Analysis from High-throughput Sequencing Data. Diss. University of Manchester, 2014.



This uncertainty matters

chri: 334085004| 33410000| 33415004| 334350000|
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(a) Transcript sequence profile.
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(b) Splice variant model.

Figure 2.12: Exon model of transcripts of gene Q6ZMZ0. (a) transcript
sequence profile obtained from the UCSC genome browser (Kuhn et al., 2013). In
this annotation, transcript ucO0lbwm.3 has different 3’ untranslated region and
transcript uc010oho.1 has extra nucleotides at the end of second exon. As the
second change cannot be distinguished in the UCSC genome browser diagram,
we provide schematic splice variant model highlighting the differences (b).

4.2
50 100
4.0 4.6
"M —
" §33 G 4.4
f -
= 3.6 S 4.2 150
- o
v 3.4 S 4.0
3.2 3.8
3'62.6 3.0 3.4 3.8 0 3'02.6 3.0 3.4 3.8 0 3'3.0 3.4 3.8 4.2 0
uc010oho.1 uc010oho.1 uc00lbwm.3

*Glaus, Peter. Bayesian Methods for Gene Expression Analysis from High-throughput Sequencing Data. Diss. University of Manchester, 2014.



This uncertainty matters

We observe considerably increased variance due to read mapping

ambiguity
I ] L | 1 | | 1e4
10° | -
10° |
le3
10% |
S
C B
.g 103 . 100
(C ;
>
102 3
. 110
10' |
' 11
10° |

10° 10* 10° 10° 10* 10°
Mean (counts)

If we know this increased uncertainty, we can propagate it & use it
in downstream analysis (differential expression)!

*Glaus, Peter. Bayesian Methods for Gene Expression Analysis from High-throughput Sequencing Data. Diss. University of Manchester, 2014.



