
Estimating gene and 
transcript abundance 

using RNA-seq 



…

isoform A

isoform B
isoform C

% Gene 1

% Gene M

Abundance Estimates

Inference 
(e.g. Salmon)

Transcript Quantification: An Overview

Sample

…

G
en

e 
1

G
en

e 
M

1 gene ⇒ many variants (isoforms)

Measurement 
(RNA-seq)

10s-100s of millions of  
short (35-300 character) “fragments”



Sample

…

G
en

e 
1

G
en

e 
M

1 gene ⇒ many variants (isoforms)

Measurement
(RNA-seq)

10s-100s of millions of  
short (35-300 character) “reads”

…

isoform A

isoform B
isoform C

% Gene 1

% Gene M

Abundance Estimates

Inference
(e.g. Sailfish)Given:    (1) Collection of RNA-Seq fragments 

     (2) A set of known (or assembled) transcript  sequences 

Estimate:   The relative abundance of each transcript



Sample

…

G
en

e 
1

G
en

e 
M

1 gene ⇒ many variants (isoforms)

Measurement
(RNA-seq)

10s-100s of millions of  
short (35-300 character) “reads”

…

isoform A

isoform B
isoform C

% Gene 1

% Gene M

Abundance Estimates

Inference
(e.g. Sailfish)Given:    (1) Collection of RNA-Seq fragments 

     (2) A set of known (or assembled) transcript  sequences 

Estimate:   The relative abundance of each transcript



Why not simply “count” reads

The RNA-seq reads are drawn from transcripts, and 
our spliced-aligners let us map them back to the 
transcripts on the genome from which they originate.

Problem: How do you handle reads that align equally-
well to multiple isoforms / or multiple genes?

• Discarding multi-mapping reads leads to incorrect 
and biased quantification

• Even at the gene-level, the transcriptional output of a 
gene should depend on what isoforms it is 
expressing.



First, consider this non-Biological example

Here, a dot of a color means I hit a circle of that color.  
  What type of circle is more prevalent? 
  What is the fraction of red / blue circles?

Imagine I have two colors of circle, red and 
blue. I want to estimate the fraction of circles 
that are red and blue.  I’ll sample from them by 
tossing down darts.
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First, consider this non-Biological example
Imagine I have two colors of circle, red and 
blue. I want to estimate the fraction of circles 
that are red and blue.  I’ll sample from them by 
tossing down darts.

You’re missing a crucial piece of information!
The areas!

There is an analog in RNA-seq, one needs to know the  
length of the target from which one is drawing to  
meaningfully assess abundance!



These errors can affect DGE calls

From: Soneson C, Love MI and Robinson MD 2016 [version 2; referees: 2 approved] F1000Research 2016, 4:1521 (doi: 10.12688/f1000research.7563.2)

Variants of Salmon

Variants of “counting”

Resolving multi-mapping is fundamental to quantification

Note: induced large changes  
in isoform composition to 
demonstrate this effect.



From: Soneson C, Love MI and Robinson MD 2016 [version 2; referees: 2 approved] F1000Research 2016, 4:1521 (doi: 10.12688/f1000research.7563.2)

Can even affect abundance estimation in absence of alternative-splicing 
(e.g. paralogous genes)

Paralogs of

Resolving multi-mapping is fundamental to quantification



• finding locations of reads (alignment) 
is slower than necessary 

• alternative splicing  and related 
sequences creates ambiguity about 
where reads came from 

• sampling of reads is not uniform or 
idealized, exhibits multiple types of 
bias 

• uncertainty in ML estimate of 
abundances

    simply aligning reads in a 
sample can take hours

     multi-mapping reads          
     cannot be ignored /   
     discarded or assigned   
     naïvely 
 

     RNA-seq can exhibit  
     extensive and sample- 
     specific bias

Main challenges of fast & accurate quantification

    There is both technical  
    (shot noise) and inherent  
    inferential uncertainty in  
    abundance estimates

→

→

→

→

https://en.wiktionary.org/wiki/na%C3%AFvely


Experimental Mixture

How can we perform inference from sequenced fragments?

In an unbiased experiment, 
sampling fragments depends on: 
 

• # of copies of each txp type 
• length of each txp type
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Experimental Mixture

We call these values η = [0.3, 0.6, 0.1] the nucleotide fractions, 
they become the primary quantity of interest
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Say we knew the η, and observed a single read that mapped 
ambiguously, as shown above.  

What is the probability that it truly originated from G or R?

normalization 
factor

length(                  ) = 100

length(                  ) = 66

length(                  ) = 33

x 6 copies

x 19 copies 

x 6 copies

= 600 nt

= 1254 nt

= 198 nt

~ 30% blue

~ 60% green

~ 10% red

Pr {r from G} =

⌘G

length(G)
⌘G

length(G) +
⌘R

length(R)

=
0.6
66

0.6
66 + 0.1

33

= 0.75

Pr {r from R} =

⌘R

length(R)
⌘G

length(G) +
⌘R

length(R)

=
0.1
33

0.6
66 + 0.1

33

= 0.25

Resolving a single multi-mapping read
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Alignment of RNA-seq data (the input to inference)

Van den Berge, Koen, et al. "RNA sequencing data: hitchhiker's guide to expression analysis." Annual Review of Biomedical Data Science 2 (2019): 139-173.



Probabilistic assignment (EM algorithm)

Van den Berge, Koen, et al. "RNA sequencing data: hitchhiker's guide to expression analysis." Annual Review of Biomedical Data Science 2 (2019): 139-173.



A probabilistic view of RNA-Seq quantification

We want to find the values of η that maximize this probability.  
We can do this (at least locally) using the EM algorithm.

observed 
fragments 

(reads)

known  
transcriptome

nucleotide 
fractions

assumes 
independence 
of fragments

Prob. of selecting 
ti given η

Prob. of generating 
fragment fj given that it originates from ti

Depends on 
abundance 

estimate

Independent of 
abundance 

estimate

*Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." BMC bioinformatics 12.1 
(2011): 1.

Pr{F | ⌘, T } =
NY

j=1

Pr{fj | ⌘, T }
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A probabilistic view of RNA-Seq quantification

We want to find the values of η that maximize this probability.  
We can do this (at least locally) using the EM algorithm.

observed 
fragments 

(reads)

known  
transcriptome

nucleotide 
fractions

assumes 
independence 
of fragments

Prob. of selecting 
ti given η

Prob. of generating 
fragment fj given that it originates from ti

Depends on 
abundance 

estimate

Independent of 
abundance 

estimate

We can safely truncate Pr{ti | η} 
to 0 for transcripts where a 
fragment doesn’t map/align.

*Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." BMC bioinformatics 12.1 
(2011): 1.

Pr{F | ⌘, T } =
NY

j=1
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A probabilistic view of RNA-Seq quantification

EZ∣f,η(t) = P(Znij = 1 ∣ f, η(t)) =
(η(t)

i /ℓi)P( fn |Znij = 1)

∑i′ ,j′ 
(η(t)

i′ 
/ℓ′ i)P( fn |Zni′ j′ = 1)

η(t+1)
i =

EZ∣f,η(t) [Ci]
N

,

where Ci = ∑
n,i,j

P(Znij = 1 | f, η(t))

Equations adapted from: Bo Li, Victor Ruotti, Ron M. Stewart, James A. Thomson, Colin N. Dewey; RNA-Seq gene expression estimation with read mapping uncertainty, Bioinformatics, Volume 26, Issue 4, 15 February 2010, Pages 493–500, https://doi.org/10.1093/bioinformatics/btp692

E-step: (what is the “soft assignment” of each read to the  
              transcripts where it aligns)

M-step: Given these soft assignments, how abundant is each  
             transcript?

This approach is quite effective.  Unfortunately, it’s also quite 
slow.

https://doi.org/10.1093/bioinformatics/btp692


An interactive example

https://colab.research.google.com/drive/1JS0Dsu2lYGjsTqjdWYJaRiA7mXRBhSaU?usp=sharing

https://colab.research.google.com/drive/1JS0Dsu2lYGjsTqjdWYJaRiA7mXRBhSaU?usp=sharing


From supplementary material of : Bo Li, Victor Ruotti, Ron M. Stewart, James A. Thomson, Colin N. Dewey; RNA-Seq gene expression estimation with read mapping uncertainty, Bioinformatics, Volume 26, Issue 4, 15 February 2010, Pages 493–500, https://doi.org/10.1093/bioinformatics/
btp692

Gene expression estimation accuracy in simulated data

Mouse liver

Maize

https://doi.org/10.1093/bioinformatics/btp692
https://doi.org/10.1093/bioinformatics/btp692


Figure 2 from Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.

What if we model fragment counts instead of 
individual fragments themselves?
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We have 4 reads, but only 2 eq. classes of reads
eq. Label Count Aux weights

{B,E} 2 w{B,E}B,w{B,E}E

{C} 2 w{C}C

Fragment Equivalence Classes

This idea goes quite far back in the RNA-seq literature; at least to 
MMSeq (Turro et al. 2011)

Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.
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We have 4 reads, but only 2 eq. classes of reads
eq. Label Count Aux weights

{B,E} 2 w{B,E}B,w{B,E}E

{C} 2 w{C}C

Fragment Equivalence Classes

wji encodes the “affinity” of class j 
to transcript i according to the 
model. This is P{fj | ti}, aggregated 
for all fragments in a class.

This idea goes quite far back in the RNA-seq literature; at least to 
MMSeq (Turro et al. 2011)

Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.



The # of equivalence classes grows with the complexity of the 
transcriptome — independent of the # of sequence fragments.

Typically, two or more orders of magnitude fewer equivalence 
classes than sequenced fragments.

The offline inference algorithm scales in # of fragment 
equivalence classes.

The number of equivalence classes is small



L (⌘;F) =
Y

fj2F

MX

i=1

Pr (ti | ⌘) Pr (fj | ti)

L (⌘;F) ⇡
Y

Fq2C

0

@
X

hi,tii2⌦(Fq)

Pr (ti | ⌘) · Pr (f | Fq, ti)

1

A
Nq

,

This lets us approximate the likelihood efficiently

Approximate this:

with this:
product over all fragments

sum over all alignments of fragment

product over all equivalence classes

sum over all transcripts labeling this eq. class



Why might              matter?
Consider the following scenario:

0 200 800

fragment 
length dist.

Conditional probabilities can provide 
valuable information about origin of a 
fragment! Potentially different for 
each transcript/fragment pair.

Prob of observing a fragment of size ~200 is large
Prob of observing a fragment of size ~450 is small

Pr(fj | ti)

1 “Salmon provides fast and bias-aware quantification of transcript expression”, Nature Methods 2017

Many terms can be considered in a general “fragment-transcript agreement” model1.
e.g. position, orientation, alignment path etc.



Actual RNA-seq protocols are a bit more “involved”

There is substantial potential for biases and deviations from the basic 
model — indeed, we see quite a few.

Prakash, Celine, and Arndt Von Haeseler. "An Enumerative Combinatorics Model for Fragmentation Patterns in RNA Sequencing Provides Insights into Nonuniformity of the Expected Fragment Starting-Point and Coverage Profile." Journal 
of Computational Biology 24.3 (2017): 200-212.



Biases abound in RNA-seq data
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Biases in prep & sequencing 
can have a significant effect on the 
fragments we see:

Sequence-specific bias2— 
sequences surrounding fragment 
affect the likelihood of sequencing

2:Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): 1.

1:Love, Michael I., John B. Hogenesch, and Rafael A. Irizarry. "Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation." bioRxiv (2015): 025767.

Fragment gc-bias1— 
The GC-content of the fragment 
affects the likelihood of sequencing

Positional bias2— 
fragments sequenced non-uniformly 
across the body of a transcript

0.50

0.75

1.00

1.25

1.50

−2 0 2 4
position

ob
s 

/ e
xp

ec
te

d

factor(rowid) A C G T

5'

0.4

0.8

1.2

1.6

−2 0 2 4
position

ob
s 

/ e
xp

ec
te

d

factor(rowid) A C G T

3'

0.0

0.5

1.0

1.5

25 50 75 100
GC fraction

ob
se

rv
ed

 / 
ex

pe
ct

ed

factor(cbin) [1, 34) [34, 68) [68, 101)



Biases abound in RNA-seq data
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Biases in prep & sequencing 
can have a significant effect on the 
fragments we see:

Sequence-specific bias2— 
sequences surrounding fragment 
affect the likelihood of sequencing

2:Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): 1.

1:Love, Michael I., John B. Hogenesch, and Rafael A. Irizarry. "Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation." bioRxiv (2015): 025767.

Fragment gc-bias1— 
The GC-content of the fragment 
affects the likelihood of sequencing

Positional bias2— 
fragments sequenced non-uniformly 
across the body of a transcript

Basic idea (1): Modify the “effective length” of a 
transcript to account for changes in the sampling 
probability. This leads to changes in soft-assignment in 
EM -> changes in TPM.

Basic idea (2):The effective length of a transcript is the sum 
of the bias terms at each position across a transcript. The 
bias term at a given position is simply the  
(observed / expected) sampling probability.

The trick is how to define “expected” given only 
biased data.



Salmon provides fast and bias-aware 
quantification of transcript expression 

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017).  
Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods.



Salmon’s “pipeline”

lightweight 
replacement  

for traditional alignment

Note: Salmon can work

with either raw reads or 

with reads aligned to the


transcriptome.



Phase 1: Online Inference (asynchronous!)

η0 η1 η2 η3 η4 η5

Compute local η’ using ηt-1 & current “bias” model to allocate fragments 

Update global nucleotide fractions: ηt = ηt-1 + at ηʹ

Process fragments in batches:

Update “bias” model
Weighting factor that 

decays over time

• Have access to all fragment-level information when making these updates  
• Often converges very quickly. 
• Compare-And-Swap (CAS) for synchronizing updates of different batches

Place mappings in equivalence classes

*Based on: Foulds et al. Stochastic collapsed variational Bayesian inference for latent Dirichlet allocation. ACM SIGKDD, 2013.

Hsieh, Cho-Jui, Hsiang-Fu Yu, and Inderjit S. Dhillon. "PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent." ICML. Vol. 15. 2015.

Broderick, Tamara, et al. "Streaming variational bayes." Advances in Neural Information Processing Systems. 2013.

Raman, Parameswaran, et al. "Extreme Stochastic Variational Inference: Distributed and Asynchronous." arXiv preprint arXiv:1605.09499 (2016). (@ICML 2017)

*



mini-batches processed in parallel by different threads

additive nature of updates mitigates effects of 
no synchronization between mini-batches

Give each transcript appropriate prior mass η0 (init.)

For each mini-batch Bt of reads {

For each read r in Bt {

For each alignment a of r {
compute (un-normalized) prob of a using ηt-1, and aux params

normalize alignment probs & update local transcript weights η’ 

update global transcript weights given local transcript 
weights according to “update rule” ⟹

}

}

ηt = ηt-1 +wt ηʹ
}

add / update the equivalence class for read r 
sample a ∈ r to update auxiliary models

Hsieh, Cho-Jui, Hsiang-Fu Yu, and Inderjit S. Dhillon. "PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent." ICML. Vol. 15. 2015.

Broderick, Tamara, et al. "Streaming variational bayes." Advances in Neural Information Processing Systems. 2013.

Raman, Parameswaran, et al. "Extreme Stochastic Variational Inference: Distributed and Asynchronous." arXiv preprint arXiv:1605.09499 (2016). (@ICML 2017)



In this phase, we maintain current estimates of abundance.

Each group of fragments arrive (streaming), and we use their 
mapping locations & current estimates to: 

1. Allocate them to transcripts 
2. Update auxiliary models 
3. Place them in equivalence classes

We use a streaming, parallel, stochastic inference algorithm for Phase 1; a variant 
of Stochastic Collapsed Variational Bayesian Inference [SCVB0]*

* Foulds, James, et al. "Stochastic collapsed variational Bayesian inference for latent Dirichlet allocation." Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. 
ACM, 2013.



our ML objective has a simple, closed-form update rule in terms of our eq. classes

count of eq. 
class j

weight of ti in eq. 
class q

Optimizing the objective

we also provide the option to use a variational Bayesian objective instead

↵u+1
i =

X

Fq2C
Nq

 
↵u
i w

q
iP

hk,tki2⌦(Fq) ↵
u
kw

q
k

!

estimated read count from transcript i 
at iteration u+1



Sequence-bias models don’t account  for fragment-level GC bias

Accuracy difference can be larger with biased data

Simulated data: 
2 conditions; 8 samples each

• Simulated transcripts across entire 
genome with known abundance 
using Polyester (modified to 
account for GC bias)

• How well do we recover the 
underlying relative abundances?

• How does accuracy vary with level 
of bias?

Lower is better



Recovery of DE transcripts

• set 10% of txps to have fold 
change of 1/2 or 2 — rest 
unchanged.

• How well do we recover true 
DE?

Simulated data: 
2 conditions; 8 replicates each

• Since bias is systematic, effect 
may be even worse than 
accuracy difference suggests.

Mis-estimates confound downstream analysis



Salmon Kallisto eXpress

All transcripts 1,183 2,620 2,472

Transcripts of 2 
isoform genes 228 545 531

30 samples from the GEUVADIS study: 
15 samples from UNIGE sequencing center 
15 samples from CNAG_CRG sequencing center

Same human population, expect few-to-no real DE

DE of data between centers (FDR < 1%) (TPM > 0.1)

Bias and batch effects are substantial, and must be accounted for.

Importance with experimental data

Randomized condition assignments result it << 1 DE txp



Salmon Kallisto eXpress

All genes 455 1,200 1,582

Transcripts of 2 
isoform genes 224 545 531

30 samples from the GEUVADIS study: 
15 samples from UNIGE sequencing center 
15 samples from CNAG_CRG sequencing center

DE of data between centers (FDR < 1%) (TPM > 0.1)

Bias and batch effects are substantial, and must be accounted for.

Importance with experimental data

Effects seem at least as extreme at the gene level 



Further improving the factorization 
(at low computational cost)



A probabilistic view of RNA-Seq quantification

We want to find the values of η that maximize this probability.  
We can do this (at least locally) using the EM algorithm.

*Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." BMC bioinformatics 12.1 
(2011): 1.

but

L(⌘;F , T ) =
Y

f2F

X

ti2⌦(f)

Pr(ti | ⌘) Pr(f | ti)

This leads to an iterative EM algorithm where each iteration scales 
in the total number of alignments in the sample (typically on the 
order of 107 — 108 ), and typically 102—103 iterations

Set of transcripts where f maps/aligns



Reads 1 & 3 both map to transcripts B & E 
Reads 2 & 4 both map to transcript C

We have 4 reads, but only 2 eq. classes/types of reads

eq. Label Count
{B,E} 2

{C} 2

TranscriptFragments

1

2

3

4

A
B
C
D
E
F

Recall : Fragment Equivalence Classes

⌦(f) = {t | f maps to t}
f ⇠ f 0 () ⌦(f) = ⌦(f 0)



Equivalence classes in RNA-Seq quantification
Long history of this idea — collapsing “redundant” reads

This list is not-complete (just illustrative)

2011 2014 2016 2017
“Traditional”  
approaches

“Lightweight”  
approaches

Fleximer: Accurate Quantification of RNA-seq 
via Variable-Length k-mers. 
Chelsea J.T., et al

RNA-Skim: a rapid method for RNA-Seq 
quantification at transcript level 
Zhang & Wang



# of equivalence classes grows with the complexity of the 
transcriptome — not (asymptotically) with the # of sequence fragments.

Typically, two or more orders of magnitude fewer equivalence classes 
than sequenced fragments.

The inference algorithm scales in # of fragment equivalence classes.

The number of equivalence classes is small

,



This lets us approximate the likelihood efficiently

Approximate this:

with this:
product over all fragments

sum over all alignments of fragment

product over all equivalence classes

sum over all transcripts labeling this eq. class

The approximation applies because all f in Fq have the same 

conditional probability given ti —- i.e.

L(⌘;F , T ) =
Y

f2F

X

ti2⌦(f)

Pr(ti | ⌘) Pr(f | ti)

L (⌘;F , T ) ⇡
Y

Fq2C

0

@
X

ti2⌦(Fq)

Pr (ti | ⌘) · Pr (f | Fq, ti)

1

A
Nq

,



Why might              matter?
Consider the following scenario:

0 200 800

fragment 
length dist.

Conditional probabilities can provide 
valuable information about origin of a 
fragment! Potentially different for 
each transcript/fragment pair.

Prob of observing a fragment of size ~200 is large
Prob of observing a fragment of size ~450 is small

Pr(fj | ti)

1 “Salmon provides fast and bias-aware quantification of transcript expression”, Nature Methods 2017

Many terms can be considered in a general “fragment-transcript agreement” model1.
e.g. position, orientation, alignment path etc.



Does this term matter?

• Transcripts of RAD51 gene — txp coverage drawn randomly in [1,200]

• Distribution over 30 random replicates of this distribution

“Base” coverage
“Uniform” affinity
“Average” affinity
No factorization}

Lower is better



Does this term matter?

• Transcripts of RAD51 gene — txp coverage drawn randomly in [1,200]

• Distribution over 30 random replicates of this distribution

10x “Base” coverage

No factorization}

“Uniform” affinity
“Average” affinity

Lower is better



Given a fragment and vector of transcripts, returns a 
vector of bin indices — each in [0,k) — that encode the 
conditional bin into which f falls with respect to each 
transcript. 

bk(f, hti1 , . . . , tij i)

⌦(f) = {t | f maps to t}
f ⇠ f 0 () ⌦(f) = ⌦(f 0)

Recall:

Now:

f ⇠r f 0 () ⌦(f) = ⌦(f 0) ^ bk(f,⌦(f)) = bk(f
0,⌦(f 0))

# of conditional bins. Default =

Range-factorized equivalence relation

Maps to the same set of 
transcripts

Has the same binned cond. prob 
vector

4 + d
p
( |⌦(Fq))|e



Range-based factorization
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Range-based factorization improves approximation
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“Global” error

“Local” error

• Provides a way to control the divergence between the full and factorized 
conditional likelihood distributions of an equivalence class



• Transcripts of RAD51 gene — txp coverage drawn randomly in [1,200]

• Distribution over 30 random replicates of this distribution

10X “Base” coverage

How well does this work?

Lower is better



Transcriptime-wide assessment can mask important differences 

• 30M paired-end reads, simulated with RSEM-Sim

• Over tens of thousands of transcripts — overall differences are small
• But, we know this; factorized approaches are known to work well generally1,2,3,4

1) Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.

2) Srivastava, Avi, et al. "RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes." Bioinformatics 32.12 (2016): i192-i200.

3) Bray, N. L., et al. "Near-optimal probabilistic RNA-seq quantification." Nature biotechnology 34.5 (2016): 525.

4) Patro, Rob, et al. "Salmon provides fast and bias-aware quantification of transcript expression." Nature Methods 14.4 (2017): 417-419.

~ factorization

~r factorization

no factorization{



Transcriptime-wide assessment can mask important differences 

• Focus on a subset of “critical” transcripts (not too easy, not intractable)
• Transcripts where RSEM yields an ARD in [0.25,0.75]

• 30M paired-end reads, simulated with RSEM-Sim

~ factorization

~r factorization

no factorization{
1) Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.

2) Srivastava, Avi, et al. "RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes." Bioinformatics 32.12 (2016): i192-i200.

3) Bray, N. L., et al. "Near-optimal probabilistic RNA-seq quantification." Nature biotechnology 34.5 (2016): 525.

4) Patro, Rob, et al. "Salmon provides fast and bias-aware quantification of transcript expression." Nature Methods 14.4 (2017): 417-419.



Range-factorization improves correlation with full-model  
on experimental data

SEQC samples from UHRR (SRR1215996 - SRR1217002) 
7 technical replicates to define distribution 
Treat RSEM results as ground truth (though clearly, it’s not perfect)



, , , , , , , ,
,,,,,

Range-factorization is still very (computationally) 
efficient

# hits : The number of hits is the sum, over each equivalence class, of the 
number of transcripts in this equivalence class — i.e. 

X

Fq2C
|⌦(Fq)|

# eq. classes : The number of different “types” of read — i.e. 
X

Fq2C
1

Factorization “size” on simulated data

Difference is marginal with respect to # of reads / alignments



Range-factorization is still very (computationally) 
efficient

Zooming out



Range-factorization controls memory requirements



Estimating Posterior Uncertainty



One “issue” with maximum likelihood (ML)

The generative statistical model is a principled and elegant way to 
represent the RNA-seq process. 

It can be optimized efficiently using e.g. the EM / VBEM algorithm.

but, these efficient optimization algorithms return “point estimates” 
of the abundances. That is, there is no notion of how certain we are 
in the computed abundance of  transcript.



One “issue” with maximum likelihood (ML)

There are multiple sources of uncertainty e.g.

• Technical variance : If we sequenced the exact same sample 
again, we’d get a different set of fragments, and, potentially a 
different solution. 

• Uncertainty in inference: We are almost never guaranteed to  
find a unique, globally optimal result.  If we started our 
algorithm with different initialization parameters, we might get 
a different result.

We’re trying to find the best 
parameters in a space with 10s to 
100s of thousands of dimensions!



One “issue” with maximum likelihood (ML)

https://commons.wikimedia.org/wiki/File:Local_search_attraction_basins.png (CC BY-SA 3.0)

If we started here

We’d end up here

but, if we started here

We’d end up here

https://commons.wikimedia.org/wiki/File:Local_search_attraction_basins.png


Assessing Uncertainty
There are a few ways to address this “issue”

Do a fully Bayesian inference1: 
   Infer the entire posterior distribution of parameters, not just a ML     
   estimate (e.g. using MCMC) — too slow! 

Posterior Gibbs Sampling2,3: 
     Starting from our ML estimate, do MCMC sampling to explore  

 how parameters vary — if our ML estimate is good, this can be made 
quite fast. 

Bootstrap Sampling4: 
Resample (from range-factorized equivalence class counts) with 
replacement, and re-run the ML estimate for each sample.  This can be 
made reasonably fast.

4: IsoDE introduced the idea of bootstrapping counts to assess quantification uncertainty. [Al Seesi, Sahar, et al. "Bootstrap-based differential gene 
expression analysis for RNA-Seq data with and without replicates." BMC genomics 15.8 (2014): 1.], but it was first made practical / fast in kallisto by doing 
the bootstrapping over equivalence classes.

1: BitSeq (with MCMC) actually does this.  It’s very accurate, but very slow. [Glaus, Peter, Antti Honkela, and Magnus Rattray. "Identifying differentially 
expressed transcripts from RNA-seq data with biological variation." Bioinformatics 28.13 (2012): 1721-1728.] 

✔

✔

Happy to discuss details / implications of this further.

2: RSEM has the ability to do this, and it seems to work well, but each sample scales in the # of reads. [Li, Bo, and Colin N. Dewey. "RSEM: accurate 
transcript quantification from RNA-Seq data with or without a reference genome." BMC bioinformatics 12.1 (2011): 1.] 

3: MMSEQ can perform Gibbs sampling over shared variables (i.e. equiv classes), producing estimates from the mean of the posterior dist.Turro, Ernest, et 
al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): 1.



A few ways to implement Gibbs Sampling for this problem

The model of MMSeq

Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): 1.



A few ways to implement Gibbs Sampling for this problem

The model of BitSeq

[Glaus, Peter, Antti Honkela, and Magnus Rattray. "Identifying differentially expressed transcripts from RNA-seq data with biological variation." 
Bioinformatics 28.13 (2012): 1721-1728.] 



A few ways to implement Gibbs Sampling for this problem

The model of BitSeq (collapsed sampler)

[Glaus, Peter, Antti Honkela, and Magnus Rattray. "Identifying differentially expressed transcripts from RNA-seq data with biological variation." 
Bioinformatics 28.13 (2012): 1721-1728.] 



This uncertainty matters

*Glaus, Peter. Bayesian Methods for Gene Expression Analysis from High-throughput Sequencing Data. Diss. University of Manchester, 2014.



This uncertainty matters

*Glaus, Peter. Bayesian Methods for Gene Expression Analysis from High-throughput Sequencing Data. Diss. University of Manchester, 2014.



This uncertainty matters

*Glaus, Peter. Bayesian Methods for Gene Expression Analysis from High-throughput Sequencing Data. Diss. University of Manchester, 2014.

We observe considerably increased variance due to read mapping 
ambiguity

If we know this increased uncertainty, we can propagate it & use it 
in downstream analysis (differential expression)!


